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Abstract. Some aspects of the symmetry group SL(3, R )  of the simple harmonic oscillator 
are revisited. A realisation of the general element of the group in Newtonian spacetime 
is obtained, with the eight parameters included. The group is shown to be SL(3, R )  in 
fact, without recourse to the Lie algebra. Finally, in this way, the group law of binary 
composition of the parameters is calculated easily in the group manifold. 

1. Introduction 

Over the recent years there has been a considerable amount of literature devoted to 
the study of the symmetries of classical harmonic oscillator systems, both time indepen- 
dent (Anderson and Davison 1974, Wulfman and Wybourne 1976, Lutzky 1978a, 
Gordon 1986) and time dependent (Gunther and Leach 1977, Lutzky 1978b, Leach 
1980a, b, Prince and Eliezer 1980; cf also Lewis 1968). 

Ten years ago the full Lie group of point transformations of the simple harmonic 
oscillator was successfully identified as SL(3, R )  (Wulfman and Wybourne 1976). The 
purpose of this paper is to discuss this subject further, presenting an ‘enlargement’ of 
the previous work by Wulfman and Wybourne (1976). Interesting as that work indeed 
is, it is far from being a complete analysis of the role played by SL(3, R )  as the 
spacetime symmetry group of the simple harmonic oscillator, since that paper presents 
the spacetime realisations of the group only through its one-parameter subgroups. 
Clearly, the description of a Lie group by means of its one-parameter subgroups is 
not complete, even if one knows the associated Lie algebra. The knowledge of the 
general form of the realisation of the elements of the group (in terms of an admissible 
set of essential parameters), as well as the knowledge of the binary composition law of 
the parameters (i.e. the group law (Racah 1965)), are still missing in such an approach. 
To state it otherwise, such a description by means of the one-parameter transformations 
would be as incomplete as, for instance, a description of rotations by setting separately 
the one-parameter rotations about the Cartesian axis. Plainly, what one requires in 
such cases is an analytic continuation of these one-parameter elements of the group 
over the group manifold, so that the combination of two general elements may afford 
the group law. In  this fashion, one gets knowledge of the relevant group structure and 
its particular realisation within the theory. 

0305-4470/87/123553 + 12$02.50 @ 1987 IOP Publishing Ltd 3553 
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Certainly, in the case of non-linear realisafions of Lie groups, as they usually appear 
in classical mechanics, the direct exponentiation of a general element of the Lie algebra 
(i.e. of a linear combination of the infinitesimal differential operators acting on the 
variables at hand) becomes so wild that it is usually impossible to obtain the desired 
integrated form, unless one is handling a rather trivial exceptional case. Therefore, 
the problem must be faced ab inifio under a different perspective, and recourse to the 
powerful techniques of similarity analysis of differential equations (Bluman and Cole 
1974, Ovsiannikov 1982) seems to be unavoidable in this case. 

Let us remark from the outset that our calculations are entirely coordinate dependent 
(both in spacetime and in the parameter space of the group), since our interest in this 
paper is to solve the following problems: ( a )  to obtain an explicit realisation of the 
full symmetry group in the spacetime of the system, with all its parameters included; 
and ( b )  to obtain a local computation of the group law (as distinct from calculations 
of the Lie algebra), i.e. of the binary composition law of the parameters (Racah 1965), 
in terms of the particular parametrisation of the elements of the group used in the 
solution of the previous problem. 

Accordingly, we aim to show in this paper the general form of point transformations 
of the simple harmonic oscillator in two-dimensional Newtonian spacetime (§ 2), i.e. 
we obtain eight-parameter-dependent transformations in the variables t and x which 
leave invariant the equation of motion x + w 2 x = 0 .  Then we easily obtain the 
infinitesimal operators and the Lie algebra (0 3), which we compare briefly with the 
corresponding results of Wulfman and Wybourne (1976). As a byproduct of this work, 
in 9 4  we prove explicitly and without recourse to the Lie algebra that the group of 
transformations obtained in § 2 corresponds to SL(3, R ) .  In § 5 we solve the problem 
of obtaining the group law on the group manifold (using the parametrisation of the 
group as presented in 9 2 ) .  Finally, in § 6 we briefly present some conclusions and 
perspectives of this work. (The paper ends with an appendix which supplies some 
details of the integration process conducive to the general solution of the problem.) 

2. Point transformations of the harmonic oscillator in Newtonian spacetime 

We seek those spacetime point transformations ( t ,  x )  -f ( t ‘ ,  x ’ )  that leave the equation 
of motion of the one-dimensional harmonic oscillator form invariant. Namely, we 
consider the transformation of variables 

t’ = T(  t ,  x )  

x‘ = S (  t, x )  

with non-vanishing Jacobian 

J (  t ,  X )  = T,Sx - TxS, # 0 (2.2) 
and such that 

x + w 2 x = O e x ’ + w 2 x ’ = 0  (2.3) 

where, clearly, x’= d*x’/df’*. The extended transformations x -f x’ and x + x’ of (2.1) 
are formally given by 

X’=(T,+ Txx)-’(s,+sxX) (2.4) 



Remarks on Lie groups of point transformations 3555 

and 

X’ = ( T, + T,X) -’[ ( T,S,, - T,,S, ) + ( 2  T,S,, + T,S,, - 2 T,,S, - T,,S, )X 

+ ( T,S,, + 2 T,S,, - T,,S, - 2 T,,S,)X* 

+ (T,S,, - TXXSX)X3+ (T,S, - T,S,)X]. ( 2 . 5 )  

Now, if one substitutes from (2 .5)  into ( 2 . 3 ) ,  and separates the coefficients of the 
different powers of 1, one obtains a set of homogeneous differential equations for T 
and S, i.e. one gets 

T,S,, - T,,S, + U *  T:S = 0 ( 2 . 6 )  

T,S,, - T,,S, + U’[  T : S  - (T,S, - T,S,)x] = 0 ( 2 . 7 )  

T,S,,- T, ,SX+2(T,S , , -  T , , S , ) + 3 w 2 T : T , S = O  ( 2 . 8 )  

T,S,,- T,,S,+2( T,S,, - T , , S , ) + 3 w 2 T , T ~ S = 0 .  (2 .9)  

The general solution of these equations affords a realisation of a Lie group having 
no more than eight essential (real) parameters (Bianchi 1928), which may be adjusted 
suitably by means of the integration constants of (2 .6) - (2 .9) ,  and which operates as 
the symmetry group in the Newtonian spacetime of the system. The detailed integration 
of equations ( 2 . 6 ) - ( 2 . 9 )  is quite involved and we discuss it in the appendix of this paper. 

A glance at equations (2 .6) - (2 .9)  shows immediately that there are only two cases 
worthy of interest, depending on whether one has (case I )  T, # 0 or (case 11) T, = 0. 
This classification of the problem is not as trivial as it seems at first sight, since the 
very reason for this distinction is group-theoretic. In fact, when one starts solving this 
problem, it is not reasonable to consider a priori that case I1 is merely a ‘special’ 
instance of the ‘general’ case I, since, certainly, one must have T, = 0 at the identity, 
and therefore there is no way of knowing in advance which integration scheme is the 
better in case I in order to avoid leaving the identity component of the transformation 
group out of the picture. 

The previous remarks set the basis of the method we follow in this paper. We 
consider cases I and I1 separately (though here we show the detailed calculations 
correspnding to the first case only, for the sake of brevity). In the appendix we assume 
T, f 0 and we follow a straightforward integration scheme for solving equations 
(2 .6) - (2 .9) ,  without worrying about the possible group-theoretic meaning of the con- 
stants of integration. Afterwards, we adjust the integration constants by means of 
suitable ‘initial conditions’ which we introduce at the event ( t ,  x)  = (0,O). In this 
fashion we get a reasonable parametrisation of the point transformation group we are 
looking for. Indeed, if one solves case I 1  separately, using the same ‘initial conditions’, 
it can be shown that case I1 is included as a subgroup of the transformation found in 
case I .  Hence, in this manner we get an admissible analytic continuation of the solution 
of the problem in the group manifold. 

According to the integration procedure presented in the appendix, we obtain the 
following solution (case I ) :  

U T (  t, x)  = tan-’ k,+ tan-’( CL,,( t ) x  + &( t ) )  (2 .10)  

S ( t , x ) = $ , ( t )  c o s w T ( r , x ) + ~ , ( t ) s i n w T ( r , x )  (2 .11)  
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where we have defined 

&( t )  = k ,  sec(wt + k , )  (2.12) 

(2.13) 

$*(I)= k 4 $ l ( f ) + k 5  (2.14) 

G S (  t ) = ( k, k6/ w ) tan( wt + kl ) + k,  . (2.15) 

The constants of integration, k , ,  . . . , k 8 ,  look quite bizarre since they figure in this 
solution in just the same way they appeared during the integration process itself. As 
it stands, it is not possible to obtain the identity transformation ( 7  = t, S = x )  within 
this solution by means of a simple adjustment of the k. Hence, let us introduce the 
following set of ‘initial conditions’ at (t, x )  = (0,O): 

A ,  = T(0,O) A2 = S(0,O) 

(2.16) 

A7=tTlI(0, O)  A* = ~Sxx(0,O) 

such that the Jacobian (2.2) is different from zero at ( t ,  x )  = (0, O), i.e. 

J o =  A3A4-ASA6Z 0 (2.17) 

(cf Aguirre and Krause 1984). In  this fashion one obtains enough algebraic relations 
between the k and the A,  and one reparametrises the solution (2.10)-(2.15) in terms 
of the A. We omit the details of this tedious calculation. It yields the following 
spacetime coordinate transformations: 

t‘ = - sin-‘( [(s5 1 q 5  sin wt  + q6x 
(2.18) 

w sin w t  + q 6 x ) ’ +  (cos w t  + q7 sin wt  + q 8 x )  

q2  cos w t  + q3  sin wt  + q4x  
[ ( q 5  sin w t +  q 6 x ) * +  (cos w t  + 4’ sin w t +  q 8 x ) 2 ] ” 2  

x ’  = 

where we have defined new parameters: 

(2.19) 

(2.20) 

Equations (2.18) and (2.19) entail our final answer. Let us remark that if one sets 
q6 = q8 = 0 in (2.18)-(2.20) one arrives precisely at the solution one obtains directly in 
case I1 (i.e. assuming T, = 0), if one uses the same ‘initial conditions’ (2.16) (with 
A 5  = As  = 0). 
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Once obtained, two features can be checked in a straightforward (albeit lengthy) 
calculation, concerning transformations (2.18) and  (2.19). Firstly, by calculating their 
first and second extensions (i.e. x + x’ and x -+ x’), one proves directly that equations 
(2.18) and  (2.19) are consistent with the fundamental implication stated in equation 
(2.3) (as they should be). Secondly, by performing two successive coordinate transfor- 
mations, ( t ,  x)  + q  ( t ’ ,  x’) + q ’  ( t ” ,  x”), of the form (2.18) and (2.19), with parameters 
q = ( q ’ ,  . . . , 4’) and q’ = (q‘ l ,  . . . , qf8), respectively, one obtains a coordinate transfor- 
mation, ( t ,x)  + q ” ( t ” , x ” ) ,  of the same form (2.18) and (2.19), with parameters q”=  
(q’” ,  . . . , q”8)  that are functions of q’ and q, say: q”“ = g “ ( q ’ ;  q ) ,  a = 1 , .  . . , 8 (as 
expected). (We here omit the calculations leading to these controls. The functions 
g”(q ’ ;  q )  shall be obtained in 5 5 ,  following a more convenient approach than the 
‘direct’ one.) 

Clearly, the identity transformation corresponds to the following choice of para- 
meters: 

q l  = q* = q 3  = 0 

q 6  = 4’ = q 8  = 0. 

4 5  q = q  = 1  

The Jacobian of (2.18) and  (2.19) is 

(2.21) 

J ( t ,  x) = + ( q ) [ ( q 5  sin or + q 6 x ) * +  (cos wt + 4’ sin ut+ q 8 x ) * ] - ’ ”  (2.22) 

where + ( q )  stands for 

+ ( q )  = q4q5- q3q6+ q2(q6q7 - q 5 q 8 ) .  (2.23) 

Thus, wheneker $ ( q )  # 0, equations (2.18) and (2.19) entail an  admissible transforma- 
tion of coordinates, which holds good everywhere in spacetime. Bear in mind that the 
transformations (2.18) and  (2.19) are forbidden only at the six-dimensional locus 
+( q2,  . . . , q 8 )  = 0 in the eight-parameter space. Outside this hypersurface, the q satisfy 
the anholonomic constraints: + ( q )  > 0 or $ ( q )  < 0, and the transformations are well 
defined with respect to the parameters, for -7r < w q l  < 7r, and --CO < q” < +CO, a = 
2 , .  . . , 8 .  

In conclusion, equations (2.18) and (2.19) entail a spacetime realisation of an 
eight-parameter Lie group (which, according to the result of Wulfman and Wybourne 
(1976), must correspond to a realisation of SL(3, R ) ) .  Let us recall that one can 
parametrise the elements of a Lie group in different ways and that, in general, it is not 
possible to cover the whole group manifold by means of a single patch corresponding 
to just one set of continuous real parameters. Thus, we d o  not claim that our parametri- 
sation is the ‘best’ one. It is good enough for our purposes in this paper, since it 
certainly covers an extended domain of the group including the identity. 

3. Infinitesimal operators and the Lie algebra 

According to equations (2.21) (which give us the coordinates of the identity point in 
the group manifold), one obtains from (2.18) and  (2.19) the spacetime realisation of 
the monoparametric subgroups. Hence, in a neighbourhood of the identity one easily 
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calculates Lie’s infinitesimal operators. Recalling that q4 = 1 + Sq4 and q 5  = 1 + S q 5 ,  
one obtains 

M Aguirre and J Krause 

z1 =a, (3.1) 

z2 = COS uta,  (3 .2)  

2, =sin uta,  (3.3) 

z, = xa, (3 .4)  

(3.5) 
1 

2w 
z5 = - sin 2 m ,  - x sin’ uta ,  

(3 .6)  
X 

w 
z6 = - cos uta, - x’ sin uta ,  

(3 .7 )  
1 

Z, = -- sin’ u t a ,  - t x  sin 2wta, 
w 

(3.8) 
X 

w 
&= --sin wta, - x 2  cos wta,. 

Incidentally, it is interesting to observe that the following linear combinations of these 
operators: 

XI = z, - z, x* = z, + 2, 
x3 = z, - z, x, = z2 + z8 
x5 = z1 x6 = 2 4  

(3.9) 

1 
X ,  = Z, + 2 Z 5  x8 =- Z1-t 227 

w 

correspond precisely to the infinitesimal operators for the harmonic oscillator, as 
obtained by Wulfman and Wybourne (1976). We present the Lie algebra of the Z 
operators in table 1. This Lie algebra is isomorphic with the Lie algebra of the X 
operators, which had been already discussed in detail by Wulfman and Wybourne 
(1976). 

Table 1. The commutators [Z,, Z,], U ,  b = 1,. . . , 8 ,  of the infinitesimal operators. 
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4. SL(3, R )  

We are in a position to discuss briefly the issue of SL(3, R )  (Wulfman and Wybourne 
1976), since equations (2.18) and (2.19) afford a realisation of the group which holds 
everywhere in spacetime ( ( 1 ,  x)}. To this end, we better handle the transformations 
(2.18) and (2.19) in a more ‘compact’ fashion. Thus, let us write 

coswq’ -sinwq‘ o][ 1 q: q:][ co;wt] 
=4(coswt,s inwt,x;  q )  coswq‘ o o qs q6 sinwt 

0 1 q 2 q  9 
(4.1) 

where 

 COS ut, sin wr, x; q )  

= [ (q5 sin w t  + q6x)’+ (cos w t  + q7 sin w t  + q*~)’]-~’*.  (4.2) 

This transformation is equivalent to the transformation scheme stated in equations 
(2.18) and (2.19). 

Let us then rewrite equation (4.1), symbolically, as 

U ’ =  4 ( u ;  q)R(q)  * Q(q)  * U (4.3) 

the meaning of which is clear, i.e. U = (cos ut, sin ut, x )  (transposed). The matrices 
R . Q are non-singular; indeed, one has 

det(R - Q) = det( Q) = +(q)  = q4q5 - q3q6+ q2(q6q7 - q5q8) # 0. (4.4) 

Furthermore, the Jacobian J ( t ,  x;  q )  of (2.18) and (2.19) is given by (cf equations 
(2.22) and (2.23)) 

J ( t ,  x;  q)  = (4(u; s ) ) ~  det(Q(q)). (4.5) 

Then, as was already remarked in 8 2, upon performing two successive transformations, 
one has 

U ” =  4 ‘ 4 R ’ .  Q’ R . Q . U = 4 ” R ” .  Q” . U (4.6) 

for every point U = (cos at, sin ut, x). Of course, R’  stands for R(q‘), etc, so that 4 
and 4” depend directly on U, according to (4.2), while 4’ depends on U through (4.3) 
and (4.2). However, because of the well known law of multiplication of the Jacobians, 
J ” =  J ’ J ,  according to (4.5) we get 

(4.7) 4Ir3 det( Q”)  = ( 4’4)3 det( Q’) det( Q) .  

Thus we see that the combination (as yet unknown) 

is a function of the parameters q’ and q, but is independent of U. (Let us observe that 
the parameters q”, which figure in Q”, are functions of the parameters q’ and q, which 
figure in Q’ and Q respectively, because of the group law, i.e. q”=g(q’ ;  q), cf § 5 . )  
Finally then, the important point to note is that from (4.6) and (4.8) we obtain 



3560 M Aguirre and J Krause 

which holds for all U, i.e. one has 

since obviously (cf (4.4)) 

(4.10) 

(4.11) 

Hence, in the present realisation of the group, the rule of combination of two successive 
transformations of coordinates corresponds precisely to the rule of multiplication of 
two unimodular 3 x 3 real matrices. This simple result exhibits explicitly the fact that 
the elements of the symmetry group of the one-dimensional harmonic oscillator, as 
realised in (2.18) and (2.19), correspond necessarily to elements of the group SL(3, R )  
(Wulfman and Wybourne 1976). 

5. The group law 

We finally present the group law, i.e. the binary combination rules of the parameters 
q ’ , .  . . , q8 which figure in the transformation of variables (2.18) and (2.19) or, better, 
in equation (4.1). Clearly, according to the previous discussion, all one has to do  in 
order to find the group multiplication functions (Racah 1965) 

q”“ = g “ (  q’; q )  a = 1 , .  . . , 8  (5 .1 )  

R ”  Q” = A ( q ’ ;  q ) (  R’  * Q‘) * ( R  Q) ( 5 . 2 )  

(say) is to perform the operations indicated in (4.9) in an  explicit manner. Thus we set 

where the matrices Re Q are of the form (cf (4.1)) 

cos wq’ 
Re Q = sin wq’ (5 .3)  1 [ q2 q3 q4 

q7 cos wq’  - q5 sin wq’ 

4’ sin wq’ + q5 cos wq‘ 

q 8  cos w q l  - q6 sin wq’ 

q8 sin wq’ + q6 cos wq‘  . 

(Recall that d e t ( R -  Q) = $ ( q ) . )  Hence, substituting expressions (4.5) and (5.3) into 
(4.8) and ( 5 . 2 ) ,  after some rather lengthy but obvious manipulations, one arrives at 
the following results: 

(5.4) 

( 5 . 5 )  

(5.6) 

(5 .7 )  

1 q”’ = q t l  +- tan-’ 

q”’ = A (q’ ;  q ) (  q” cos wq’ + qf3 sin wq’ + q f 4 q 2 )  

4” sin wq’ + qt6q2 
w l (  cos wq’ + 9” sin wq’ + q”q2 

q”3=A(q’;  q ) [ ( q t 2 q 7 + q ” q 5 )  cos w q ’ + ( q f 3 q 7 - q ‘ ’ q 5 )  sin w q 1 + q ’ 4 q 3 ]  

q”4= A ( q ’ ;  q ) [ ( q f 2 q 8 +  q’3q6)  cos w q ’ +  ( q ’ 3 q x -  q’2q6)  sin w q ’ +  q’4q4] 

+ [q ’6q2q5  - (q f5q t8  - qt6q”)(q3 - q’q’)] sin wq’ + q r 5 q 5 )  

+ [q t6q2q6  - (q”q”- q t6q f7 ) (q4 -  q 2 q 8 ) ]  sin wq’ + q t5q6}  

qff5=A2(4 ’ ;  q){[qf6(q3- 9 2 4 7 ) + ( q ’ 5 q ‘ 8 -  q’6q’7)q2q2]  COS w q ’  

(5 .8)  

(5.9) 

q”6=A2(q’ ;  q){[ql6(q4- q 2 ~ 8 ) + ( q ’ 5 q ‘ 8 -  qf6q”)q2q6] COS w q ‘  
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qrr7 = A2(q ’ ;  q ) { [ ( q ‘ 7 q s +  q 7 )  cos w q ’ +  ( q ” q 7 -  q 5 )  sin w q ’  + q ” q 3 ]  

x (cos w q ’  + q f 7  sin w q l  + q’8q2)  

+ ( q f 5 q 5  cos w q ’  + q”q7 sin w q ’  + q t 6 q 3 ) ( q ”  sin wq’  + q”q2))  

x (cos w q l  + q f 7  sin wq’  + q f 8 q 2 )  

+ ( q t 5 q 6  cos w q l  + q”q8 sin wq’ + q f 6 q 4 ) ( q f 5  sin w q l  + q r 6 q 2 ) )  

(5.10) 

q ” s = A 2 ( q ’ ;  q ) { [ ( q ‘ 7 q 6 + q 8 )  cos w q 1 + ( q ’ 7 q 8 - q 6 )  sin w q 1 + q ” q 4 ]  

(5.11) 

where A is given by 
A (  q’ ;  q )  = [ (q”  sin wq’  + q”q2)*  + (cos wq’  + q‘7 sin wq’  + q’8q2) ‘ ] - ’ ’ ‘ .  (5.12) 

The importance of the group multiplication functions for a given set of essential (real) 
parameters of a Lie group is well known (Racah 1965). Bear in mind that 

(5.13) + ( q ‘ ) + ( q )  # O * + M q ’ ;  4 ) )  # 0 
and therefore, according to (4.8) one has, necessarily, 

+ ( q ’ ) + ( q )  f O*A(q ’ ;  9 )  f 0. (5.14) 

Hence, the group law is well defined everywhere outside the locus +( q )  = 0. Neverthe- 
less, let us emphasise that this group law has only a local character (distinct, however, 
from that of the Lie algebra). 

6. Conclusions and perspectives 

This paper is a report of work in progress concerning the Lie symmetries of the 
time-independent one-dimensional harmonic oscillator. Our interest in this subject 
stems from its possible physical applications in non-Abelian quantum kinematics 
(Krause 1985). Indeed, in a recent paper, the simple harmonic oscillator has been 
successfully quantised by means of the regular representation of its Newtonian subgroup 
of spacetime symmetries (Krause 1986), which, of course, is a subgroup of the full 
symmetry group considered in the present work. Hence, the kinematic quantisation 
(Krause 1985) of the full symmetry group of the harmonic oscillator seems to be an 
endeavour worthy of further research. We mention this motivation here, though in 
this paper we have not touched upon the issue of quantum kinematics. 

From the standpoint of quantum kinematics, the main results of this paper have 
been: (1) to derive formulae for q”” = g “ ( q ’ ;  q ) ,  in the case of a particular parametrisa- 
tion of SL(3, R ) .  since this knowledge is required for building the quantum kinematic 
model underlying this group (Krause 1985); and (2) to derive the general formulae 
for t’ = T(  t, x; q )  and x’ = S (  t, x; q )  in the case of the simple harmonic oscillator, since 
this knowledge allows one to obtain the waue mechanics of the system over the spacetime 
arena (Krause 19861, taking exclusively into account all its symmetries. The problem 
set by SL(3, R )  quantum kinematics will be tackled elsewhere. 
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Appendix 

Here we supply the details of the integration process conducive to the general solution 
of equations (2.6)-(2.9) when T, # 0 (i.e. case I). One easily integrates (2.6) twice with 
respect to x ,  and obtains the following general form for S :  

S (  t ,  x )  = +,( t )  cos U T (  t ,  x )  + t,h2( t )  sin U T (  t, x) ( A l l  

where G I  and t,b2 are arbitrary functions of r. We next substitute from ( A l )  into the 
remaining equations (2.7)-(2.9). It will be useful to define 

(A2) a( t, x )  = 4, cos wT + 4, sin WT. 

In this way, (2.7)-(2.9) can be cast in the forms: 

UT,, - 2 U, T, = 0 

~ u T , , - ~ u ~ T ,  -a,T,=O 

aT,T,, - u,T: - u,T,T, - W'XUT: = 0 ( A 9  

I T 2 =  *3(1)Tx ('46) 

TXT,, - T, T,, - 2 4 3 / * 3 )  T: = 0 ('47) 

(A8) 

respectively. The formal integration of (A3) is immediate. One obtains 

and, therefore, equations (A4) and (A5) become 

2 T:  T,, - T:  T,, - T, T, T,, - ( +b3/ $ 3 )  TIT: - 2 w ' X T ;  = 0. 

Thus, (A8) can be separated into the following system of ordinary differential equations: 

U - U * -  0 (A10) 

+ 4 - u * 4 = 0  ( A l l )  

where U = 43/3$3. Clearly, $I, and +4 denote two new unknown functions of t .  Since 
(A10) yields U = w tan(wt + k , ) ,  one easily arrives at 

+ 3 ( t )  = k:  sec3(wt+k,) (A121 

t,h4( t )  = k3 sec(ot+ k , ) .  ('413) 

Accordingly, equations (A6) and (A9) correspond to 

u2 = k: sec3(wt + k , )  T, 

and 

TI =[ax  t an (wf+k , )+  k,sec(wt+k,)]T, (A151 

respectively, where k ,  , k 2 ,  k3 are constants of integration. Furthermore, since 

4, sin wT - 42 cos oT 
4, cos U T  + 4, sin o T  

48:+4:)Tx 
(6, cos wT + 6, sin U T ) *  
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from equations (A2) and (A14) (after performing one partial integration in x and 
using (A16)), one obtains 

where qbo( 1 )  stands for 

w 
$o( t )  = 7 (4: + 4:) cos3( wt + k , )  

k2 

and where & ( t )  is a new function of t .  Inspection of (A17) leads us to define 

tan 0 = $,/ $, (A191 

t a n 9 = 1 , b ~ x + + ~  (A201 

so that T(  t ,  x) becomes 

= o(t)+q(t, x). (A211 

Hence 

d 
d t  

w r ,  = c o s ‘ @ - ( $ ~ / $ ~ ) + ( $ ~ x + $ , )  cos2* 

= +o cos2 9 (A23) 

follow. If one substitutes these expressions for T, and T, into (A15), recalling (A19) 
and (A20), and separates the coefficients for different powers of x, after integrating in 
t ,  one finds 

where k,, k 5 ,  k6 and k, are new constants of integration. Finally, if one substitutes 
from (A24) and (A25) into (A18) and performs a last integration in t, one obtains 

k2k6 
* I  =? ( w  ( 1 + k : ) )  tan( w t  + k , )  + k, .  

In this manner, the rather lengthy (albeit straightforward) process of integration 
is complete. From (A19) and (A24) we see that is a constant, i.e. 

(A28) 

All that remains to be done is to recollect our results: substitute from (A25) and (A26) 
into (A20), and from (A20) and (A28) into (A21) (thus obtaining T, cf (2.10)). Then 
substitute from (A27) and (A24) into ( A l )  (thus obtaining S, cf (2.11)). 

tan @ = k, .  
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